
1

mafPC, mafScope, and mafDC

Instructions and Tutorial

Matthew Xu-Friedman

University at Buffalo

Contents
General Comments.. 2
Compatibility .. 2
Preferences .. 2
mafPC ... 4

0. Installation... 4
1. General Organization .. 5
2. Interval-based Patterns .. 5
3. Using Parameters .. 6
4. Using Trains .. 7
5. Event-based Patterns ... 9
6. Time Lists ... 11
7. Dynamic Clamp .. 12
8. Loading and Saving .. 14
9. Other Features ... 15
10. Programming with mafPC .. 16
11. Some Common Issues ... 18

mafITC .. 20
mafScope... 24
mafCam ... 26
mafBrowse .. 29
mafDC ... 32
Recipes .. 35

Last updated: 10/30/2019

2

General Comments
 This document describes a bunch of useful routines to carry out electrophysiology

experiments, and you could use it really for anything involving A/D and D/A systems. There are

not a few of these packages out there. This package is in use in our own lab, as well as a bunch

of others around the world, on a daily basis for doing whole-cell patch clamp experiments.

 This package was written with generality in mind, to make it as powerful as possible.

The interface is implemented entirely in Igor-native code, so it runs on Mac and PC. It was also

written to work with both Instrutech and National Instruments boards, and can conceivably be

adapted for any data acquisition system provided adequate Igor drivers. The main parts are:

 mafScope: an oscilloscope window, primarily for patching

 mafPC: a tool for designing and executing voltage or current protocols of arbitrary

complexity

 mafBrowse: a tool for reviewing waveform data collected by mafPC

 mafITC: a set of utilities for interacting with the data acquisition system

 mafCam: a tool for interacting with cameras via Bruxton’s driver

 mafDC: a tool for driving dynamic clamp experiments

 The generality of the package makes it possible to conduct nearly any experiment you

can imagine. However, non-programmers may have a harder time getting started. It may be

advisable for an experienced Igor programmer to write macros for the non-programmers in the

lab to simply hit a button to run their experiments. There are some example scripts down in the

“Recipes” section to get used to controlling mafPC.

 While this software is mostly reliable, it is not foolproof. If you try to do something bad,

it may not stop you. In addition, there could be unknown bugs, so it is up to you to take

precautions to verify your data are correct, and that you protect your experimental efforts. If you

find bugs, please report them to Matthew Xu-Friedman (mx@buffalo.edu). The legal

department here would probably want me to say you shouldn’t use this program for anything

involving human health, in case that wasn’t obvious. We encourage you to suggest new features

by contacting us.

 If you publish a paper using mafPC, please acknowledge using it somewhere in your

methods (e.g. “Electrophysiology data were collected using Igor (Wavemetrics) running mafPC

(courtesy of M. A. Xu-Friedman)”, or similar).

Compatibility
Below are system configurations that are known to work successfully.

System: Mac OS 9, Windows XP, Windows 7, Windows 10

Boards: Instrutech ITC16, ITC18, National Instruments E-series boards (e.g. 6040e), M-

series boards (e.g. PCI-6221, -6229) or X-series boards (e.g. PCI-6361)

Amplifiers: Anything, but interactions are all via command voltage or TTLs

Igor version: Igor 7. Igor 8 will probably object to the mafDC XOP.

Preferences
In Windows, your preferences and settings files are typically found inside the Wavemetrics

folder in your Documents folder. If your IT department does not grant you permission to use

that, you will get an error message when you try to start mafScope or mafPC. In that case, go to

3

Misc→Miscellaneous Settings…→Igor User Files tab→Change Path… button to direct to

another disk location.

4

mafPC

mafPC is based on Pulse Control by Herrington & Bookman (1995). The primary changes from

that program are the generalization to controlling both Instrutech and National Instruments

board, and also that it is written in native Igor code, so it can run on both Mac and PC platforms.

0. Installation
To use mafPC, you must first install the correct drivers for your hardware.

• For the ITC board, download appropriate drivers from the Instrutech/Heka website.

There are bewilderingly many options. You can use the legacy XOP that is specifically

listed for your device, if it is still there. For the PC, install the hardware drivers first.

Then for both Mac and PC, put the Igor extension file (called “ITC18_X86_V71” or

similar) into the “Igor Extensions” folder in your Documents area. You can also use the

Igor Pro LIH XOP, which we have used in Igors 7 and 8, which covers multiple kinds of

boards on the PC, but it cannot implement dynamic clamp, as far as I can tell.

• For the National Instruments board, install the board drivers using the CD that came with

the board. Then, buy and install the NIDAQmx Tools from Wavemetrics. Note that the

NI boards work with the PC only, as the drivers for the Mac are too primitive.

Once the board is installed properly, place the following files into your “User Procedures” folder

in the Wavemetrics part of your Documents folder:

 mafITC mafutils mafPC3

Then run Igor, and add the following line to your experiment’s Procedure Window:

 #include “mafPC3”

To make sure the system is initialized properly, it is currently necessary to “Show ITC AD

Settings” in the “maf” menu. If you are also using mafScope, then opening the scope window is

sufficient to initialize the system. If you are upgrading from an earlier version, you may get an

error when you initialize because some preferences files are not compatible. Make sure to resave

your settings from the AD Settings and Scope windows.

Also, if you pre-save Igor experiments to use as templates,

beware that mafPC may not be properly initialized after an

upgrade, so try to start from a fresh template.

 Our experience is that noise characteristics of

National Instruments boards are quite different between

“differential” and “single-ended” modes. To use

differential mode with the BNC-2090 breakout box, it is

necessary to make a simple adapter that splits a BNC cable into two outputs (see picture at right).

The center wire goes to the channel (e.g. 0), and the shield goes to channel N+8 below it (e.g. 8).

If you do this, be sure to set the switch on the BNC-2090, and click the “Diff” radio button in

“Show ITC AD Settings” in the “maf” menu. This may not honestly be worth the trouble.

Furthermore, we have found that the behavior of the USB versions of NI boards have

unpredictable noise in the different modes. The bottom line is you may need to find the best

configuration empirically.

signal to ACH(N)

shield to ACH(N+8)

from

amp

5

1. General Organization
Patterns are created by the user and organized into sets. Each pattern specifies which DA and

TTL channels it controls, and sets the timing and values of each DA and TTL channel. There are

two kinds of patterns, interval-based and event-based.

2. Interval-based Patterns
These patterns specify how DA and TTL channels act over a series of steps.

Example: Simple voltage step

To make this pattern:

1. Choose “New Set” from the “maf” menu (maf→New Set)

2. In the “Untitled Set” panel, click the “New” button (at right)

3. Name the pattern “Vstep”, make it an Interval pattern, and hit

“New” (see diagram below right)

4. In the Edit Interval Panel, insert 3 rows

5. Select to record AD0, and control DA0

6. Choose a sampling rate of 100 µs, and enter the information as

in the diagram below right

7. Select “OK”

8. Now choose “Verify Pattern” from the “maf” menu. The Verify

window shows you what DA and TTL channels will

be set to when the pulse pattern is run.

9. If it gives you an error, you probably didn’t

initialize mafITC. Make sure you do that by

opening the mafScope window, or by showing the

ITC AD settings.

10. If all went well, it should look like the diagram

below right. We will be looking at patterns using

the Verify feature, rather than running them, but the

rule of thumb is that if it verifies properly, it will run

properly. I will address running patterns further

down.

11. To get a sense of what the columns in the edit panel mean, select

“Vstep” and click the “Edit” button. The “Drtn (ms)” column controls

the duration of that step, and the “DA0” column controls the voltage

(for patterns run in voltage clamp) or current (for patterns run in

current clamp). The “Abs” column determines if the voltage specified

is absolute or relative to the current holding potential/current. Fiddle around with these to

see how they change the wave in the Verify window.

6

3. Using Parameters
Parameters allow you to control times and amplitudes when a pattern is run, without requiring

you to edit the pattern by hand. Parameters are specified by their names. Everywhere you can

put a number you can put a parameter (and vice versa). Parameters are not to be confused with

Igor variables. The parameter names you use are not tied to Igor variable values in any way.

Parameter values are stored so that they needn’t be

specified the next time the pattern is run.

Example: Simple voltage step

1. Select “Vstep” from the untitled set

2. Click the “Edit” button

3. Change the duration in step 1 to “stepDrtn”, as in

the diagram at right

4. Hit OK

5. Verify the pattern with the “Verify” button

6. Now you are presented with the “Enter Parameters”

panel so you can set a value for stepDrtn

7. Enter a value, as in the diagram at right

8. Click “Verify” button, and watch what happens in the Verify window.

9. Verify it again, and enter different values, and see what happens in the

window.

Warning: Some names should not be used for parameters, and may cause

a pulse pattern to malfunction. They are any of the following words by

themselves or followed by a number:

ABS

AMP

CH

COMPILED

COMPILETIME

CONTROL

DCMINI

DCPULSE

DCVREV

DEPENDENCY

DYNAMICCLAMP

FINISH

NUMROWS

PADFINISH

PATTERN

PATTYPE

RAMPEND

RAMPSTART

REP

SAMPINT

SAVECHAN

TIME

TTL

WAVE

WAVEDEPENDENCY

7

4. Using Trains
Trains allow you to insert patterns (“subpatterns”) within other patterns, which provides a lot of

flexibility. Subpatterns are run and compiled without your having to worry about them

separately. They may share the same parameters, in which case one value applies to all

subpatterns. For interval-based patterns, it is important that patterns and their subpatterns all

control the same outputs (i.e. DA channels and TTL), and that they have the same sampling rate.

Example: TTL stimulus pulse

We want to design a pattern that gives us a short

hyperpolarizing pulse (to check our series resistance),

followed by a pause, followed by a train of TTL pulses,

followed by a short tail.

1. Select “Vstep” from the untitled set

2. Edit it, and change the channels controlled to also

include TTL

3. Click OK

4. Create a new interval pattern called “TTLStim”

(diagram 1)

5. Set it up in the Edit panel according to the diagram

at right. The parameter name in step 1 should be

entered as “trainPause”.

6. Click OK

7. Create a new interval pattern called “TTLTrain”

(diagram 2)

8. Insert the 1st line

9. Click in the “Drtn (ms)” field to select it

10. Click the “Train” button

11. This brings up the Train panel, which allows you to

specify the pattern to repeat, and the number of

repetitions. Set it according to diagram 3.

12. Click OK

13. If you want to double check the train settings, just click the “Train”

button again, and it will show you what you entered

14. Insert a 2nd line into TTLTrain, and set it to be a pause of 50 ms,

where nothing happens

15. Insert a 3rd line into TTLTrain, click in the duration field, and click

the train button

16. Set the Train panel according to diagram 4. Note that we are using a

parameter for the number of repetitions.

17. Click OK

18. Insert a 4th line, and set it to be a pause of 100 ms, where nothing

happens

19. The TTL train pattern should now match diagram 2

20. Click OK

21. Verify the pattern

22. Enter the parameters according to diagram 5

1

2

3

4

5

8

23. Bring up the Verify window for this TTLtrain. It

should look like the diagram at right. We expect to

get a prepulse of –5 mV for 5 ms, followed by a train

of 10 TTL stimuli separated by 10 ms each (0.2 stim +

9.8 pause).

24. Verify it again and enter different values, and see what

happens in the Verify window.

Note that we used trains in two different ways in this

pattern. We used one to generate a genuine TTL train, but

for the Vstep pattern, we only had 1 repetition. This highlights the strategy of creating a simple

building block pattern to do a specific thing, and then plugging it into a more complex pattern to

actually execute.

9

5. Event-based Patterns
In the interval-based patterns above, you specify what happens for all controlled outputs at every

step, where you control the duration of each step. By contrast, in event-based patterns, you

specify the absolute time that an event occurs, where an event can be a change in a holding

potential/current (an “AMP” event), or a TTL going high or low (a “TTL” event), etc. This

method can do everything interval-based patterns can do and more.

Example: Simple voltage step

1. Create event-based pattern “evVstep”

2. Set Control to DA0

3. Add 4 lines, and set them according to the diagram

at right

4. The “Time (ms)” column determines at what time an

event takes place. The “Event” column determines

what type of event it was, which depends on which

channels are being controlled. The “Ch/Bit” column

determines which DA channel or TTL bit is

undergoing the event. The “Value” column

determines the holding potential or current for DA

channels. For TTL bits, “Value” has a checkbox, which determines if the TTL line is high

(checked) or low (unchecked). The “Abs” column determines whether the amplitude is

absolute, or relative to the current holding potential. All event patterns must end with a

“Finish” time (or “Padfinish” – see below).

5. Verify your pattern

6. It should look just like the output for “Vstep” that we did above

10

Example: TTL stimulus train

1. Create a new event-based pattern “evTTLstim”

2. Set Control to TTL

3. Add 3 lines and set them according to the diagram at

right

4. Create a new event-based pattern “evTTLtrain”

5. Set Control to TTL and DA0

6. Add 3 lines and set them according to the diagram

below right

7. The first event is a train of pattern “evVstep” for 1

repetition, and the second event is a train of pattern

“evTTLstim” with the number of repetitions set to

the parameter “trainN”

8. Now verify and enter parameters according to the

diagram below right.

9. Verify the pattern. It should resemble the output for

interval pattern “TTLtrain” above. Note that to get

10 ms spacing between TTL pulses, trainPause must

be 10 – 0.1 ms (i.e. the sampling interval).

11

6. Time Lists
So far, we have explored the features of interval- and event-based patterns that are equivalent,

but event-based patterns allow another feature for specifying the times and amplitudes of events,

using lists. In this case, the given event occurs at each time specified. This allows some

powerful behaviors that interval-based patterns cannot easily accommodate.

Example: Irregular TTL train

1. First, edit “evTTLstim” to be very short, according

to the diagram at right

2. Now edit “evTTLtrain”, and modify the line that

specifies the TTL train according to the diagram

below right. Make sure to change the number of

repetitions for the “evTTLstim” train to 1. Notice

that the “Time” on step 2 is now a list of times.

Each value in this list must be separated by commas.

3. Verify the pattern. It will be an irregular pulse train.

4. Edit “evTTLtrain” again, and change the time list to

parameter “TTLtimes”

5. Verify again. For the parameter “TTLtimes”, give

whatever values you want, and watch the effect in

the Verify window.

This behavior is very useful for generating both regular

and irregular stimulus trains, which are difficult to do

any other way.

If our event had been an AMP, rather than a train, we

could have specified the DA values using lists as well.

If there is only one item in the list, then it is duplicated

at each time specified. If the number of items in the value list matches the number of items in

the time list, then each time is assigned its corresponding DA value.

Note that for a TRAIN event, the number of repetitions of the train is independent of the length

of the time list. Usually with a time list, TRAIN events will have the number of repetitions set to

1. If the number of TRAIN repetitions were greater (say, 6), you would get 6 repetitions of the

subpattern at each time specified in the list. This might be useful for generating multiple bursts

of activity.

Another thing you can do with time lists in event-based patterns is nothing at all. If you set the

time as nothing (i.e. blank) or not-a-number (NaN), then it won’t execute that line. This may

seem counterintuitive, but it is useful in experiments where you vary the time of, say, a sound or

light pulse using a parameter, and sometimes you may want the pulse omitted. In that case, pass

an empty time as a parameter. That way, you don’t need a whole separate pattern that omits the

pulse.

12

7. Dynamic Clamp
Dynamic clamp is a feature of the ITC-18, where the user can specify up to 2 linear

conductances, as well as a “forcing” conductance. mafPC assists in gaining access to this

feature, using event-based patterns. These are some critical elements to get started.

1. Only the legacy drivers provide access to the dynamic clamp capabilities of the ITC18. The

new LIH 8+8 drivers do not. The most recent system we have confirmed the ability to use

legacy XOPs is Igor 6 running in Windows 7. I am glad to hear if you are able to use a

different configuration.

2. The Instrutech interface requires that DA0 be used to control the current to be passed into the

cell, and AD0 records the membrane potential.

3. DA1, DA2, and the TTL outputs can theoretically also be used, however we find that only

DA1 works properly.

4. The G1 and G2 conductances are assumed by the ITC-18 to be in nS.

5. The “forcing” conductance is used to inject a constant current. To use this, enter a value for

Forcing Gain in the AD Parameters dialog box (choose “Show ITC AD Settings” from the

“maf” menu). We determined our value of 0.0009 V empirically.

6. Conductances > 10 nS are not handled well by the ITC interface. This can be extended

further by placing an amplifier between DA0 and the input to the current clamp amplifier.

Be sure to set the External Gain value in the AD Parameters dialog box.

7. The ITC-18 must be explicitly placed in dynamic clamp mode to run these patterns, using the

Instrutech extension ITC18LoadDynamicClampMode (to enter dynamic clamp) and

ITC18Reset (to leave dynamic clamp), or mafITC_SetDynamicClamp (see below).

Example: Forcing conductance

1. Create a new event-based pattern, named

“accessDC”

2. Check the “Dynamic clamp” checkbox in the Edit

panel

3. Add six lines and edit them according to the

diagram at right.

4. Verify the pattern, and enter forceEnd = 2 and

forceAmp = -300.

5. This pattern delivers a –300 pA current to the cell.

The small G1 conductance is used to avoid a

rounding error in the ITC interface.

13

Example: Synaptic conductance

1. Extract a single EPSC from a voltage clamp experiment, scale it to +1,

and call it “wm” (see example at right).

2. Create a new event-based pattern, and name it “DCStim”

3. Edit it according to the diagram below right.

4. Verify the pattern. Enter the value “10” for DCAmps, and “5,7,7.5,8.5“

for DCTimes.

Note that the synaptic conductances summate when they

overlap. The synaptic conductances are scaled by

multiplying the mini wave according to the value

specified for the DCPULSE. With time lists, the value

may also be a list, in which case, each synaptic

conductance can have a different peak amplitude.

Synaptic conductances can also be mimicked using an

AMP event for a conductance, with a wave for the

value.

This ITC18 implementation of dynamic clamp has some limitations.

Most notably it can only do linear synaptic-like conductances, whose

timecourse is specified ahead of time. The mafDC XOP described

below has more functionality. mafDC does not make use of this G1,

G2 business, but rather acts through the DA outputs just like any

other pattern. Therefore, the specific dynamic clamp functions here

are not used, although the CONVOLVE event, which acts like

DCPULSE, may be useful.

14

8. Loading and Saving
Patterns are organized into sets, and sets and patterns can all be saved to disk for use by other

experiments. Igor provides a folder to store things like this. In Windows 7, the folder is inside

the Wavemetrics folder in Documents called “mafPC” (C:\Users\your name here\Documents\

WaveMetrics\Igor Pro 6 User Files\mafPC). The Mac has it in an analogous place. This can

raise some issues you should be aware of. Sometimes, the IT department doesn’t let you touch

this directory. If that is the case, you will need to specify an alternative. The other problem is

that if you have multiple users with distinct log-ins, then they all have their own individual User

Files area, which makes it much harder to share pulse patterns and procedure files. To resolve

both these problems, Igor lets you set a different User Files area. To do that, go to the

“Miscellaneous Settings…” in the “Misc” menu. As you can see by looking at the “Untitled Set”

panel, patterns can be individually loaded, saved, copied, renamed, etc. You can also save an

entire set at a time by using the “Save Set” button. Try saving your set as “TestSet”, then

creating a new set to clear out memory, and then loading in your old set. Edit the patterns to

convince yourself they are still there.

There are two important points. First, when you load a pattern into an experiment, all the

operations take place on that pattern, and do not affect the one on disk until it is saved explicitly.

There is no reminder to save your patterns when you close an experiment. The experiment

continues to hold its patterns, so if you need to check what patterns you used to use, or if you

forgot to save them, just reopen the experiment.

Second, all your old patterns and sets will remain in the mafPC directory on your hard drive until

they are moved somewhere. You can use the file managers in your operating system (i.e. the

Mac Finder or Windows Explorer) to backup or clear out clutter.

15

9. Other Features
There are many features that will only be touched on here. Please experiment with them to find

out how they work. They are mostly self-explanatory.

Ramps: Allow a voltage or current ramp. In interval-based patterns, ramps are specified by

clicking in a DA amplitude field and then clicking the “Ramp” button. Start and end values are

entered in the Ramp panel. In event-based patterns, ramps are specified by using RAMPSTART

and RAMPEND events. Each RAMPSTART must be matched by a later RAMPEND.

Waves: Allow an arbitrary wave to be sent out a DA channel. In interval-based patterns, first

click in the DA amplitude field, and then click the “WAVE” button to enter the wave’s name.

The scaling of the wave is ignored. If a wave has too many points for the time allocated, it will

be truncated. Waves that are too short fill out their time with the last value.

 In event-based patterns, waves are specified by clicking in the DA value field, and then

clicking the “WAVE” button to enter the wave’s name. You can also just type

“WAVE:waveName” into the value field. The scaling of the original wave is ignored. Waves

are copied in, and the last point in the wave is used to set the DA output for the rest of the

pattern. Waves that are too long are truncated, so make sure the pattern is long enough to

accommodate it.

PADFINISH: Event-based patterns require an event to end them. The FINISH event uses an

absolute time. This is a problem if you use trains or waves, and may not know how much time to

allow. In this situation, use a PADFINISH event. The time value here is added to the last event

time specified, so that data may be collected before ending. In practice, I rarely use “FINISH”,

only “PADFINISH”.

CONVOLVE: The CONVOLVE event allows you to send out a more complex output. You

specify an Igor wave that is to be sent out at the specified event times. This is somewhat more

complex than AMP events, which are basically square pulses. On the other hand, they are

simpler than specifying a whole wave ahead of time to send out. You could use this to build

complex stimuli, or as part of a dynamic clamp interface that interacts with a slave computer.

Sort, and arrows: Allow an event-based pattern to be organized temporally. The ordering of

lines is ignored when an event-based pattern is compiled, however.

Subpatterns in interval- vs. event-based patterns: For interval-based patterns, every

subpattern must control the same outputs as the parent pattern. This is not true for event-based

patterns. There, a subpattern may control only the TTL or the DA. DA subpatterns that overlap

in time supersede each other, whereas TTL patterns are OR’d together. Use the Verify window

to check that these work the way you intend.

16

10. Programming with mafPC
All the functions you have been doing with the user interface are also accessible from Igor

macros and functions. Of course, usually, you won’t just be verifying, but rather actually

running your patterns. Here are the important commands you will find useful.

mafPC_OpenSet (setname)

 This allows you to automatically load a set at the beginning of an experiment.

mafPC_Run (“PatternName”, ParameterList)

 Runs a pattern after making sure it is compiled properly.

 Note that the name of the pattern must be enclosed in quotation marks. Channels to

record are determined by the pattern, and saved according the settings in the AD parameters

window (see mafITC). The ParameterList allows you to pass the parameters for a pattern and

its subpatterns. This list is formatted like Igor’s keyword-list syntax, i.e.

 “parameter1:value1;parameter2:value2;timelist:time1,time2,time3”

Note that parameter names are separated from their values by colons (:), parameters are

separated from each other by semi-colons (;), and time list values are separated from each other

by commas (,). These parameters can be joined together in one big statement, or built up using

Igor commands, such as ReplaceNumberByKey. Ordering doesn’t matter for parameter lists,

and all parameters are passed to each train subpattern. Parameters are stored by a pattern when it

is compiled, so on subsequent compilations, they need not be respecified until they change or the

pattern is editted.

Examples:
mafPC_Run (“TTLtrain”, “stepDrtn:5;trainPause:9.8;trainN:10”)

mafPC_Run (“Vstep”, “stepDrtn:” + num2str (myStepDrtnVariable))

mafPC_Run (“evTTLtrain”, “TTLtimes:50,60,75,78,85”)

FYI: For help in generating time and amplitude lists, mafutils also includes a utility function:

Wave2List (wave, delimiter) takes a numeric wave and converts it to a delimited string list. So

the last example could have been done as:
make /n=5 myTimes={50,60,75,78,85}

mafPC_Run (“evTTLtrain”, “TTLtimes:” + Wave2List (myTimes, “,”))

Parameters that are not used by a pattern are ignored, and all the parameters are inserted into the

wave note. These two features give you a useful way of embedding additional information into

your waves. For example you could pass the parameter “CURRENTDRUGS: NBQX,CPP”, and

retrieve that information later using Igor’s note and stringbykey commands.

mafPC_RunInBackground (“PatternName”, ParameterList)

Only works for NIDAQ users. This is the same as mafPC_Run, but it returns control

immediately to the function that called it, rather than waiting for the data to be collected by the

data acquisition system. The routine mafPC_WaitingforBackground () tells you if the process

is complete. This is necessary if you have other tasks to attend to while data are being collected.

For example, Bruxton’s SIDX drivers can capture images from a camera like Cooke’s Sensicam

QE into Igor, but those drivers don’t automatically offload images from the camera, so you have

to do something similar to the following:

17

mafPC_RunInBackground (“DoCameraTrial”, “exposureTimes:100,200,300,400”)

do

 // calls would go here that check the camera and download images

while (!allImagesCollected)

do // dummy loop to wait for A/D data to finish

while (mafPC_WaitingForBackground ())

// all done collecting – now process the data

You need to be careful when you use this that you do not try to run another pattern until the

previous one has completed. There is a reservation system in place to try to prevent that, but

problems can arise if you abort a function before the reservation is cleared. If that happens, you

may need to reset the AD. In addition, we have found that sometimes this can cause Igor to

hang. Right now, we think this is a bug in the NIDAQmx drivers (it couldn’t be my fault, could

it). It seems this problem occurs when the scope window is also running. Therefore, it may be

best to stop the scope when you call mafPC_RunInBackground.

mafPC_Compile (“PatternName”, ParameterList)

Same syntax as for mafPC_Run. All patterns must be compiled before they are run. However,

mafPC_Run calls the compile routine automatically to verify that patterns are up-to-date, so it is

unlikely that you would ever compile patterns explicitly.

mafPC_RecreateSet ()

mafPC_AddPattern (patname, pattext)

 These are useful routines if you don’t want to have separate patterns and sets on the hard

drive, but want them tied into your favorite procedure files. The idea here is to create a pattern

from a text string in an initialization function, rather than loading it off the disk. To do this, first

create your patterns the usual way with the user interface of mafPC. Then call

“mafPC_RecreateSet ()”, to generate the appropriate function calls to mafPC_AddPattern. You

can just cut and paste this into your initialization function. Now when you open a new

experiment, and run that initialization function, you will create all those patterns, and be ready to

go. For example:

Sometimes patterns can be quite long, and the output of mafPC_RecreateSet () will be split on

multiple lines, so you will need to copy and paste carefully, and repair the splits.

Command line:

Copy to initialization function:

Igor responds

You type

18

11. Some Common Issues

This is a list of things to watch out for, or tricks that you might find useful.

1. Upgrading Igor. When you upgrade versions of Igor, such as from 5 to 6, you need to watch

out for some problems. mafITC and mafScope store default settings in a special preferences

location. When you upgrade versions of Igor, those settings get left behind. To carry them

forward, you will need to find them on your hard drive. The simplest way is to search for

“mafITC_settings”. Depending on the version you have, you may find several important

files and folders: “mafITC_settings”, “default.txt” that contains your default mafScope

settings, plus the “mafPC” folder that contains all your patterns and sets. You can copy these

to the folder named for your new Igor version to reduce your setup time.

2. Upgrading Windows. Windows 7 disallows things that used to be possible in XP. In

particular, Igor is no longer allowed to write anything into its own folder. The practical

upshot is that mafPC and mafScope can’t save the preferences/settings files or patterns or

sets where they used to (away from prying eyes in the Igor folder of the Program Files).

Now these have to go in a folder that you have been ignoring in your Documents Folder,

entitled Wavemetrics. This is the place to put your patterns and sets. So if you are upgrading

to Windows 7 and want to bring over your old patterns and sets, put them here. The

downside of this is that each user has a separate area for patterns and settings, so it is more

awkward if patterns need to be upgraded among many users. You can avoid that problem by

designating a different User Files area (see “Miscellaneous Settings…” under the Misc

menu).

3. Recovering the baseline. For those that like to use the “Baseline subtract” option (e.g. in

voltage clamp experiments), the value that was subtracted is stored with the wave in the wave

note. You can retrieve the value by calling NumberByKey (“BASELINE”, note(w)), where

w is the wave you just collected.

4. Non-events. Suppose you want to write a generalized pattern that has some event (say, a

TTL pulse) happen at different times, but on some trials you don’t want that event at all.

You could do that by having two different patterns, that are otherwise identical. A more

tricky solution is to specify the timing of the event using a parameter. For trials where you

want the event to occur, you specify the parameter as normal (e.g. “…;doStim:10;…”), but

on trials where you want to skip it, pass an empty parameter (“…;doStim:;…”). When you

do that, mafPC just leaves the event out. Note that this is not the same as not passing the

parameter at all. In that case, mafPC will complain that you didn’t specify it, or, worse yet,

uses the parameters from previous calls (which are saved) and do it anyway.

5. Digital outputs on the National Instruments boards. NI boards provide digital input-

output (labelled “DIO” or “P”). (I’ve been referring to digital channels as TTLs in this

documentation.) The NI interface panels such as the BNC2090 do not provide obvious

access to the digital lines. You have two options. One is to patch the digital lines you want

through to the BNCs labelled User1 or User2, which

may be convenient. To do this, connect a jumper

from the digital line you want (e.g. DIO0) to the BNC

you want (e.g. User1) (see picture). 1 mm pins work

well. The second approach is to connect a wire from

the DIO line directly to another device. If your

experiment requires three DIO lines, then you have to

Example of patching TTL lines to User

BNCs. DIO1 is patched to User1, and DIO3

is patched to User2. Also, note that digital

ground (DGND) is tied to ground (GND)

19

figure out an adapter from a 1 mm pin to a BNC. In both cases, it is important to check that

the target device and the 2090 share a common ground. Usually BNCs take care of this for

you, but NI is unusual in allowing BNC grounds to float, which can cause very strange

behavior. We find it helpful to explicitly ground the digital ground outputs on the BNC2090.

20

mafITC

mafITC is a package of routines for easing interactions with data acquisition boards. It is

obviously named for the Instrutech boards, but also allows interaction with National Instruments

boards, and theoretically could be modified to interact with any A/D interface that has Igor

drivers. Many of its features can be controlled using “Show ITC AD Settings” in the “maf”

menu (see diagram), or by using mafScope (see mafScope). AD settings that were stored using

the “Save” button are automatically loaded the next time mafITC is initialized.

Collected waves:

When mafPC_Run is executed, the pattern specifies which AD channels to record. mafITC

looks up what these waves are to be called, depending on the channel’s base name and the output

counter. So, for example, if AD0 and AD1 are to be recorded, and the base names for these

channels are “w” and “ch1_”, and the output counter is 37, then wave w37 and ch1_37 are

created to hold the responses of these channels. These waves can be automatically saved (only

useful for unpacked experiments) and displayed (a target window should be assigned), and

details of the data collection can be printed to the Igor history area.

Routines you may find useful:

mafITC_Init (): Loads in the settings for the A/D system

mafITC_ADGain (channel): Reports A/D gain for the specified channel

mafITC_DAGain (channel): Reports D/A gain for the specified channel

mafITC_Units (channel): Returns the units for the specified channel

mafITC_ADisCC (channel), mafITC_DAisCC (channel): Returns 0 if currently set to voltage

clamp, or 1 if current clamp

mafITC_SetADClamp (channel, newCC), mafITC_SetDAClamp (channel, newCC): Sets

the specified channel to voltage clamp (newCC=0) or current clamp (newCC = 1)

mafITC_SetDynamicClamp (doIt): Sets the ITC-18 to dynamic clamp mode (doIt=1) or

regular mode (doIt=0)

mafITC_SetHP (channel, value): Sets the holding potential of the specified DA channel to the

new value. If you are in current clamp, it sets the holding current.

mafITC_GetHP (channel): Reports the holding potential of the specified channel. Equivalent

to original Pulse Control variable “hp”.

mafITC_nextWave (): Reports the wave output counter value. Equivalent to original Pulse

Control variable “nextWave”.

mafITC_ADPrefix (channel): Reports the prefix used when storing waves collected for the

specified channel

mafITC_lastWave (channel): Reports the name of the last wave collected for the specified

channel as a string. You can use this to analyze your data as it is collected, using wave

indirection. For example, to get the minimum value from the last wave you collected

through AD channel 0, you would enter:

 print wavemin ($mafITC_lastWave (0))

mafITC_SetTTL (channel, state): Sets the digital outputs to be high or low, independent of

running a pattern.

mafITC_whatAD (), mafITC_isITC (), mafITC_isITC18 (), mafITC_isNI (): Reports on the

current platform in use.

21

mafITC_GetAD (channelWave, valueWave): Returns the current values on the AD channels

specified in the channel wave. Only works for the NIDAQ at the moment.

Known missing features:

Digital input is not implemented for the National Instruments boards (though, it is possible in

principle).

Only one National Instruments device can be accessed, and it must be named “dev1”. Use NI’s

Measurement & Automation program to verify that you have a working device called “dev1”. If

you swap boards around, the board that used to work as “dev1” will become disabled, and the

new board will be called “dev2”. You will need to delete the useless “dev1” and rename “dev2”

as “dev1”.

Application Notes

1. mafITC has been used successfully with the ITC18, ITC16, NI6221, NI6229, and NI6361

boards. It has been most thoroughly tested using the PC. The main limitations for the

Macintosh are:

a. NI did not make decent drivers available for the Mac, so the NIDAQmx XOP does

not work, and consequently, neither do mafITC, mafScope, and mafPC.

b. There are subtle differences in the drivers for the ITC18 and ITC16 between the Mac

and PC, which are not documented. My recollection is that the calls to

ITC16/ITC18StimAndSample inconsistently either have a “,0” at the end or not. You

can try adding or deleting these if you are having trouble. (Search for

StimAndSample in mafITC and mafScope, and put “,0” at the end of these

statements, or delete them, and see if it helps.)

2. National Instruments PCI 6229. If you use a 6229, you should make sure you have

updated drivers. The old drivers named half of the board “dev1” and the other half “dev2” as

a kluge for doubling the number of input and output channels. The new NI drivers make this

transparent. You can verify your drivers are current by running the “Measurement and

Automation” program in your NI folder and looking at the names for your 6229. If there’s

only one name, you’re good to go. If there’s two, you should get the update.

3. LIH ITC18. The ITC18 is getting to be an old interface, and the newer XOP from HEKA

behaves differently from the old interface. First, it does not implement dynamic clamp

anymore. Second, the XOP requires that the board be explicitly activated to work. We find

that the board can become inactive when the computer sleeps, or when you start from a

template experiment. In that case, it is necessary to hit the Reset button in mafITC AD

Settings, at which point, the “Ready” light should turn on, and it will be ready to go.

4. Setting the gains. We think as electrophysiologists in terms of pA and mV related to the

cell, but the DAQ and the amplifier converse with each other using Volts. So your command

currents or potentials that you use in Igor need to be converted to Volts when you control the

amplifier. In the Multiclamp Commander, you can see the gains by clicking on the tools

icon, and you can enter these (or rather their reciprocals) into mafITC AD Settings. For

example, if the command sensitivity in current clamp is “400 pA/V” in the Multiclamp

Commander, then you enter 2.5 mV/pA as the DA gain in mafITC AD Settings. In addition,

there can be a discrepancy between your command and what the amplifier actually does. For

us, we command a holding potential of 10 mV in voltage clamp, but the Multiclamp

22

Commander reports being at 9.5 mV, and the error gets worse with larger steps. We find that

this can be corrected by modifying the DA gain to something like 53 mV/mV. I can’t tell if

the error is in the DAQ (the voltage sent out) or in the Multiclamp 700B (the voltage read in).

If you can tell where the error arises, I’d be happy to know.

23

ITC AD Settings

1. Data acquisition platform (ITC16/ITC18/NI M-series/NI E-series)

2. Sets if NIDAQ is to be used in Differential or Single-Ended mode (we use Single-Ended)

3. Checkbox to autosave waves after collecting (only useful for unpacked experiments)

4. Reset button, in case A/D system freaks out

5. Save these settings, to be auto-loaded on next startup

6. Output counter, which provides the suffix for collected waves

7. Auto-display of collected waves. Choices may be off, append to specified graph, replace in

specified graph (see #8), or mafBrowse (see

mafBrowse)

8. Radio buttons indicating that auto-displayed wave

should be appended to or replaced in the top

graph, or in the graph with the name specified

9. Sets the information to be reported in the history

area of the experiment. Choices may be off, full

(reporting all parameter settings), or minimal

(reporting just pattern name and time)

10. Popup of AD channels (inputs) to determine

settings

11. Popup to quickly set AD and DA gains for a few

amplifiers. Feel free to add your own.

12. Gain for AD channel in voltage clamp

13. Units for AD channel in voltage clamp

14. Gain for AD channel in current clamp

15. Units for AD channel in current clamp

16. Prefix for storing collected waves

17. Checkbox to indicate if baseline should be subtracted after collecting. Lower checkbox

specifies that this should only be done in voltage clamp (not current clamp).

18. Range of AD channel, to control on-board gain. Typical values are 1, 2, 5, and 10. Smaller

range gives higher resolution.

19. Popup of DA channels (outputs) to determine settings

20. Gain for DA channel in voltage clamp

21. Units for DA stimulus in voltage clamp

22. Gain for DA channel in current clamp

23. Units for DA stimulus in current clamp

24. External gain, for amplifier after DA (useful for ITC18 dynamic clamp1)

25. Forcing gain, for ITC18 dynamic clamp

1 If you don’t use dynamic clamp, set this to 1. Otherwise, this issue is a little complicated. The problem is that

the Instrutech board has a math error in dynamic clamp mode such that it can’t put out large currents. So you have

to put an amplifier between the D/A output and the microelectrode amp, and just ask for a smaller output. This

actually works, but then you would rather think in terms of what you actually want, and not the smaller thing you are

asking for. So, you set your external gain to 10 or something, and then it is nearly transparent to the user. A new

approach to dynamic clamp is described below in mafDC.

1

3

4

5
6

2

7
8

9

10

12 13 14 15

16
17

19
22

20
21 23

24

25

11

18

24

mafScope

mafScope is an oscilloscope window. It runs in a normal Igor window, and can be left running

without adversely affecting other data collection activity. It is very useful for setting the states of

different DA and AD channels. All interaction is through the scope window user interface. Note

that it does not directly communicate with the actual amplifier, such as to set clamp mode.

Installation

To install, place the following files into your “User Procedures” folder in the Wavemetrics part

of your Documents folder:

 mafutils, mafITC, mafscope7

Then run Igor, and add the following line to your experiment’s Procedure Window:

 #include “mafscope7”

Then from the “maf” menu, choose “Show Scope Window”

Controls

The Controls Toolbar on the top contains

controls that apply to the whole scope window.

ADC Checkboxes: Set which AD channels to

display.

TTL Checkboxes: Set which TTL channels to

put high during a pulse.

DA Checkboxes: Set which DA channels send

out signals (independent of AD)

“Intrvl”: Sets the interval between sweeps.

“Sweep”: Sets horizontal scale.

“Drtn”: Sets pulse duration.

Settings popup: Allows you to show a grid,

display FFT of AD waves, set colours of AD

traces, and save/retrieve scope

configurations.

“Go/Stop” button: Starts/stops the scope.

“Store” button: Saves a copy of the currently displayed waves.

The Channels Toolbar at left contains controls specific to each channel.

Gain buttons: Change trace magnification.

VC/CC radio buttons: Change AD to voltage/current clamp

DA dropdown menu: Links AD channel to a DA channel (for setting holding potential or holding

current).

Center buttons: Center the trace once (button) or always (checkbox).

HP/HC field and buttons: Sets holding potential/current.

Pulse checkbox and field: Sets amplitude of current/voltage pulse.

Resistance Display: Shows calculated electrode resistance, based on pulse amplitude.

For DA channels, the DA output can be a tone (specify frequency and amplitude), noise (specify

amplitude), or an arbitrary wave (specify wave name).

25

Application Notes

1. To patch onto a cell and do voltage or current clamp, we find it natural to link AD0 with

DA0, AD1 with DA1, etc. The DA channels control the holding potential (or holding

current) for the cell you record through the AD channels. If you want to do two-electrode

dynamic clamp using the ITC-18, then you have to link AD0 with DA1 and DA0 with AD1

because of the system’s requirements.

2. mafScope is not smart enough to detect how many AD, DA, or TTL lines there are, so not all

the available checkboxes are necessarily usable. In particular, many data acquisition boards

from National Instruments have only 2 DA lines, so selecting DA2 or DA3 will cause errors.

If you need access to additional lines, let me know, as it is relatively simple to add them. It

will just take up more space.

3. To change from voltage clamp to current clamp using a Multiclamp or Axopatch 200, first

put the amplifier in “I = 0” mode. Then switch the relevant channel to current clamp on the

scope window (making sure the holding and pulse currents are set properly). Then move the

amplifier to IC. (You may see bleed-through of scope commands in “I = 0”, which is Axon’s

fault, not mine.) These steps are necessary because the scope only interacts with the

amplifier through AD and DA channels. There is an XOP that controls the Multiclamp, but

mafITC hasn’t had a chance to play with it yet.

4. The goal of the different scope configurations is that you can switch more easily between

multiple configurations (e.g. “Patch Configuration” in voltage clamp, “Dynamic Clamp”

configuration in current clamp, with different gains, etc.). One configuration has special

importance, called “default”. You should set up the scope window how you will want it to

be when you first start up, and save that configuration as “default”. The scope window will

start up with that configuration on first opening.

5. The allowable sweep duration depends on the speed of the hardware, and the number of

channels being controlled and displayed. Therefore, too brief a sweep duration will cause an

error. If this occurs, hit the “Abort Procedure Execution”, then the scope’s “Stop” button.

Then, increase the sweep duration, and hit “Go” again. If you are using NIDAQ, you may

need to Reset the A/D using the Reset button in the AD Settings Panel. I agree with you that

this behavior is extremely annoying, but I haven’t found a good way to avoid it.

6. Sometimes the scope initiation is a little rocky, especially if you are using it for the very,

very first time and there is no default file to start from. Some ways to force the scope to get a

grip: hide and then show an A/D channel, click a pulse on and off, change the sweep

duration, go to CC then back to VC. It is a good idea to save the default configuration when

you finally get it where you want it.

7. Sometimes, Igor will draw a different panel’s controls in the scope window, and vice-versa.

I think I have caught many of those problems, but if one of your routines causes it, just close

the scope window and open it again.

8. Sometimes (if you hit the up or down buttons too many times, too quickly??), the sweep

duration or pulse duration may take on weird values. To fix them, on the command line, type

“root:maf:mafscopesweepdrtn=X”, where X is something reasonable. Ditto for

“root:maf:mafscopepulsedrtn=X”. Sometimes you will have to turn a channel or a pulse on

and off to refresh the associated waves.

26

mafCam

mafCam is a set of routines to help with the SIDX package from Bruxton Corporation (www.

bruxton.com). This package is an Igor XOP for controlling CCD cameras. mafCam provides a

more intuitive user interface to gain access to its features. It can be used alongside mafPC and

mafScope for recording imaging information during electrophysiology experiments. It requires

that you have purchased and installed the SIDX XOP from Bruxton.

Basic outline

You would probably start an experiment by first initializing

the camera (“Init mafCam” in the maf menu), which will bring

up the camera control panel and a focus window after you

select your camera. If you need to interact with the camera

through another program (e.g. Cooke’s CamWare), you will

need to “Release” the camera from Igor’s control, and if you

want to use the camera again through Igor, you will have to

quit that other program, and “ReInit”ialize the camera. This

process is also useful to reactivate a messed up camera.

 You focus on your sample by hitting the “Focus”

button, which is analogous to the “Go/Stop” button in the

oscilloscope window. Then you can use the slider to adjust the exposure time as well as the

binning and the gain until your image looks right. You can check whether the camera is in a

good exposure range using the “Histogram” checkbox. The “AutoScale” checkbox controls if

the focus window uses grayscale values from 0 to 4095, or whether it uses the image’s minimum

and maximum values as black and white. If “Autoscale” is unchecked, saturated pixels are

indicated in blue (for 0) or red (for 4095).

 Many cameras have faster acquisition times for regions of interest (ROIs). To use one of

these, you drag the marquee in the focus window over the area you are interested in, just as you

normally do before you zoom in on a wave or image. Then click the “Add” button next to the

ROI list, which will record the coordinates of that part of the image. You can then name your

ROI anything you want (e.g. “soma” or “dendrite”). You can “Delete” these ROIs individually

or “Clear All” at once. To see where the defined ROIs are, you can select the “Show ROIs”

checkbox, which will draw a box around each ROI in the focus window. You can control the

colour of that box by right clicking the colour in the ROI list.

 Once you have focussed and maybe defined some ROIs, you can collect images. If you

just want to collect the image you focussed on, you can “Capture” it individually. If you want

to tie it into a physiology experiment, then you typically would run the camera in this manner

(explanations below):
mafCamPrepareCamera (#images, useROI)

firstshot = mafCamNextShot ()

mafPC_RunInBackground (“mypattern”, “myparameters”)

howmany = mafCamRetrieveImages (#images, useROI, 1)

do

 doXOPIdle // give NIDAQmx a chance to check on things

while (mafPC_WaitingForBackground ())

// now look at images...

27

The PrepareCamera call sets up the camera to take a number of images, and useROI is the

number of the ROI you want to collect (use “0” for the whole field). These images must be

triggered using a TTL output in your pattern, which is directed to the trigger input on your

camera. Make sure that the number of images you request is the same as the number of triggers

that your pattern will deliver.

The RetrieveImages call then gets the images after the pattern has been run. If the entire field is

specified (useROI = 0), these images are named based on the “Prefix” (which is “shot” in the

example above) plus a counter that increments each time you collect an image. If a ROI is

specified, the name is based on the name of the ROI (“ROI1_” or “ROI2_” in the example). If

you have checked the “Auto Display” checkbox, these collected images are displayed in a

window.

Routines You May Find Useful

mafCamInit (): Sets up the camera for data acquisition, loads drivers, selects camera, etc.

mafCamPrepareCamera (howmany, useROI): Sets up the camera to collect “howmany”

triggered images from ROI “useROI”. If “howmany” is NaN, then it does continuous

acquisition.

mafCamRetrieveImages (howmany, useROI, terminateAcquisition): Gets the specified number

of images that you want to collect. If they are not available yet, it waits. You can interrupt

with the Esc key, which will give an error. Alternatively, if “howmany” is NaN, then it gets

whatever is available. Set “terminateAcquisition” to 1 if you want it to stop trying to collect

images (i.e. if you got all that you expected to get). It returns how many were images were

actually read. This is only useful in continuous acquisition.

mafCamNextShot (): Returns the next index value of the shot (analogous to mafITC_nextWave)

mafCamGetBase (ROI): Returns the prefix for the given ROI (analogous to mafITC_ADprefix)

Known issues

1. Sometimes the histogram window gets confused. If it does, just uncheck it and check it

again. If it crashes your computer, my apologies. Save often. I blame Bruxton. Or Igor.

But never myself.

2. Sometimes the camera gets confused. If it does, release it, and re-init.

Application Notes

1. mafCam has only been tested using the Cooke Sensicam. The Sensicam is only capable of

dealing with one ROI at a time. So, unfortunately, you can’t have a “soma” ROI and a

“dendrite” ROI. You can draw your ROI as tightly as possible around the two for added

speed. If you can, rotate the camera so that you use as few rows as possible (i.e. have them

laid out on the camera as a short, wide rectangle). According to Dan Brown at Bruxton, you

will get faster frame rates that way. Not so for columns.

2. One general issue for cameras is that they do not time-stamp the acquisition, which makes it

very difficult to tell when exactly an image was taken. This diminishes the appeal of

continuous acquisition. I would recommend always using triggered acquisition, because the

timing is controlled and known.

3. Make sure that if you use mafPC with mafCam, that you use “mafPC_RunInBackground”

and check whether you collect your images during data acquisition. The Sensicam can only

28

hold 2 images and it will act as though the others never appeared. This currently requires

using the NIDAQmx drivers.

29

mafBrowse

mafBrowse is an interface to help you review the traces you have collected. It assumes that

traces have a prefix followed by a numbered index, such as are generated by mafPC and mafITC.

It also allows hiding of stimulus artifact and elimination of recording glitches.

Installation

To install, place the following files into your “User Procedures” folder in the Wavemetrics part

of your Documents folder:

 mafutils, mafBrowse

Then run Igor, and add the following line to your experiment’s Procedure Window:

 #include “mafBrowse”

Then from the “maf” menu, choose “mafBrowse”.

Controls

Show Group

Base: Specify the base prefix for waves you want to see.

#: Specify the index of the individual wave you want to see. Arrows allow quick scrolling

through all the data.

Tags: List of keys in the wavenote that you aren’t interested in seeing. By default all keys are

displayed in the textbox at the upper right of the browse window, but many are of marginal

usefulness (for example, “pattern”, “time”, “baseline”, etc.). To hide all fields, enter “*” in

the Tags field.

Skip Group

+/– buttons: Skip to the next/previous wave whose wavenote tags match the current wave.

This is useful for reviewing similar stimulation conditions without intervening different ones.

30

Tags: Specifies the wavenote tags that must match the current wave.

Artifact Group

Popup: Allows automatic removal of stimulus artifacts, with the duration specified in the

“drtn” field. Options are “blank” to simply erase the artifact, “smooth” to interpolate a

straight line across the artifact, and “none”. The original wave is unchanged. To make a

copy of the modified wave, you would need to duplicate the trace (e.g. duplicate

mafbrowsewave_0 myNewWave)

drtn field: Specifies the duration of the stimulus artifact.

Times field: Specifies the times of the stimulus. This can be either particular time points (e.g.

“10”) or parameters from the wavenote (e.g. “do0”). Multiple times or parameters can be

specified, separated by semi-colons. Times are in milliseconds. Stimulus times are marked

with vertical lines above the trace.

Mark popup: Indicates how stimulus times should be marked. Options are “None”, “Plain”

which uses vertical lines (“|”), “Fails” which uses an “X” if the response following a stimulus

falls below the threshold specified in the threshold field below, “Num” which labels stimuli

by their number.

Threshold field (unlabeled): Specifies the minimum amplitude for identifying a failed response

after a stimulus. Useful when the Mark popup is set to “Fails”.

F/F Group

F/F checkbox: Calculates the F/F of the wave, with reference to the zero wave number

specified. This is to be used for calcium imaging with a photomultiplier tube or photodiode.

Zero field: Holds the index of the wave that acts as a zero reference.

Glitch Group

Helps eradicate trace acne, i.e. brief jumps in voltage or current that originate from pump noise

or the suction line. Place the round cursor (cursor A) on a point right before an ugly glitch,

and set the number of points to erase. Hit the button and >poof< now that ugly glitch is

replaced with a straight line. This changes the original wave and is not undoable.

Filter Group

d/dt field: Allows reviewing an arbitrary derivative of the wave.

F fields: Apply a 4-pole Bessel filter with the specified low and high cutoff frequencies. A

frequency of “0” means no cutoff.

 button: Saves all the settings in the window to a preferences file on the disk, except the

wave base name and number, and the zero wave. These preferences become the defaults

when a new mafBrowse window is instantiated.

Contract/Expand buttons: Click the little minus signs to minimize each control group. The

little minus sign on the main window will hide the control bar completely. These can be

restored by hitting the plus buttons. (A bug in Igor may make the control panel reappear

when you resize the mafBrowse window. They said they would try to fix this.)

Routine You May Find Useful

mafBrowse (prefix, index, zero wave, instance): Opens up or updates a mafBrowse window.

The first three parameters set up the wave to be looked at, and a zero wave for doing F/F

measurements. The instance parameter is a way for you to instantiate multiple distinct browse

windows.

31

Known Issues

If the wave note has one really long line, the whole thing may seem to disappear. It is good to

make use of the “Tags” feature in that case.

Application Notes

1. mafBrowse is useful both during data collection and afterwards. It can be configured to hide

the stimulus artifact in various ways. These do not change the original data, just the display.

2. You can review two channels of data independently, using the instance feature. For

example, say you are doing paired recordings and store data as waves with base names “pre”

and “post”. To review both, you would specify different instance values when you call

mafBrowse:
mafBrowse (“pre”, 0, 0, 0)

mafBrowse (“post”, 0, 0, 1)

This will display pre0 in one window and post0 in a second window. If you reuse an

instance value (e.g. by calling mafBrowse (“pre”, 1, 0, 0), that will update the display to

show you the new wave (in this case, pre1). The menu call of mafBrowse assumes an

instance of 0.

32

mafDC
mafDC is an XOP that controls a fast dynamic clamp. It runs inside Igor, mainly for the sake of

the user interface. It must be run on a PC, because it uses the National Instruments hardware.

The purpose of dynamic clamp is to mimic a conductance, and mafDC is capable of mimicking

multiple types of conductances: a leak, inhibitory or excitatory synaptic conductances, and

channel conductances. You can mimic GABA, AMPA, and NMDA type synaptic conductances.

Channels can be a Hodgkin-Huxley-type sodium conductance or a general-purpose Markov

conductance, with arbitrary reversal potential and number of states. Its main value is that it is

extremely fast (thanks to Lorin Milescu for his invaluable help). It relies on the information

maintained by mafITC to interact with the amplifier.

Installation

To install, place the following files (or shortcuts) into the appropriate folder in the Wavemetrics

part of your Documents folder:

 Into “User Procedures”: mafutils, mafITC, mafDC helper, (optionally, mafScope7)

 Into “Igor Extensions”: mafDC XOP

 Into “Igor Help Files”: mafDC Help

Then run Igor, and add the following line to your experiment’s Procedure Window:

 #include “mafDC helper”

 (optionally also #include “mafScope7”)

Then from the “maf” menu, choose “mafDC Helper Panel”.

The scope window is not necessary, but it can be helpful in setting up the dynamic clamp for the

first time.

Using mafDC

The features of the mafDC XOP are explained in detail in a paper (Yang

et al., 2015, J Neurophysiol 113: 2713), and in the Help file. The user is

encouraged to look at these resources for additional explanations.

Briefly, mafDC runs on a slave setup, i.e. with its own PC, NI data

acquisition system, monitor, keyboard, mouse, etc. Ideally it is just set

running, while you interact primarily with the Master setup to specify

conductances, and to record cellular responses. Here we explain the

mafDC Helper Panel, and some strategies to get going.

Helper Panel

At right is the panel to facilitate calls to the mafDC XOP. The call itself

is shown at the bottom of the panel. The checkboxes are used to

indicate which components of the dynamic clamp are desired, i.e.

synaptic conductances (AMPA, GABA, and/or NMDA), the current

pulse pass-through, a leak conductance, and/or channel conductances

(Hodgkin-Huxley Na, or general-purpose Markov). It also specifies

whether the dynamic clamp should reset the current to Zero when it

terminates, or hold the last value, and whether the dynamic clamp is run

in Test mode. Each dynamic clamp component has its own parameters,

the amplitude for static conductances or the A/D channel for changing

33

ones, and usually the reversal potential. When all the desired components are set up, you hit the

“Start DC” button, and the dynamic clamp starts. To interrupt, it is necessary to hit Igor’s

“Abort” button at the bottom of the screen.

Issues

1) Amplifier issues. To calculate the correct currents to pass, the dynamic clamp on the slave

setup needs to know the membrane potential (usually through A/D channel 0). The master

setup, of course, also reads the membrane potential. In our experience, Axon amplifier

outputs are too weak to be read on two A/D systems (they even seem to have trouble with

one), so we do not recommend putting a BNC T-connector on the amplifier output. This will

lead to measurement errors. Use a secondary output instead (e.g. “Scope” on the Multiclamp

700B).

2) Setting up conductances on the Master. When the conductance amplitude fluctuates with

time (e.g. synaptic conductances), this is accomplished by specifying the conductance

waveform on the Master setup, and sending it out a D/A to an A/D on the Slave. If you are

using mafPC, you can use the CONVOLVE event to specify time-varying conductances.

The explanation on p. 15 above is sketchy, but it works quite similarly to the dynamic clamp

feature for the ITC18 (p. 12). That is, you should generate an Igor wave with your typical

conductance waveform (e.g. an EPSC), scaled to +1, and clip off any extra junk where the

conductance is very nearly 0. In your pulse pattern, specify a number of CONVOLVE

events when you want the pulse to occur. mafPC inserts that wave scaled to the specified

amplitude. This convolved wave is then sent out the D/A to the dynamic clamp setup. While

this convolution approach works well for AMPA receptors (at least in our system), GABA

and NMDA receptor currents may not add linearly. This is easy to verify using voltage-

clamp recordings, and comparing the IPSC/EPSC resulting from train stimulation vs. the

IPSC/EPSC predicted by convolving a single IPSC/EPSC with the amplitudes and times in a

train. In our experience, this does not work well for NMDA trains. We instead record these

train EPSCs and pass them entire to the dynamic clamp using the wave feature for AMP

events (see part 9 of mafPC).

3) Gains. It is best to take this step by step, working with a model cell. The membrane

potential readings on both Master and Slave (usually A/D channel 0), as well as the Slave

current output (usually D/A channel 0) should be as according to the amplifier gains. Run

mafScope on the Slave setup to double check it receives the correct conductance amplitude

from the Master. (Caution: If you run the scope window on the Slave setup, you will need to

Reset the A/D in the AD Settings Panel to free it up before invoking mafDC.) Also, apply a

leak conductance in mafDC, and verify that the membrane potential reaches the expected

value of Vrest = gleak Eleak / (gleak + gmodel cell).

 For each time-varying conductance sent from the Master (e.g. synaptic conductances), the

D/A gains on the Master setup should be the same as the A/D gains on the Slave (e.g. 100

mV/nS). You can verify these are set correctly by delivering square pulses of conductance

from the Master while running mafDC, and seeing that the responses have the correct

reversal potential and reach the correct membrane potential (using the formula above). For

this, it is simplest to set the model cell’s membrane potential by passing current using the

amplifier controls.

 The current pass-through (PULS) feature lets you send current/voltage pulses so you can

patch and then do dynamic clamp without moving cables around. You can verify the

34

current/voltage being requested using mafScope on the Slave. We set the output from the

Master to 50 mV/mV (voltage clamp) and 2.5 mV/pA (current clamp), and the input on the

Slave to 2.5 mV/pA, and it seems to act properly when the Master is in voltage or current

clamp, even though the Slave stays in current-clamp mode.

4) Adjusting the amplifier. It is important to properly compensate for pipette capacitance. This

should be as large as possible without causing the electrode to ring. This is done by hand in

current clamp. If using single-electrode dynamic clamp, the bridge should also be balanced.

This is done by passing brief current pulses, and adjusting the bridge until the fast transient is

reduced. If the access resistance changes during the experiment, this will need to be

adjusted. If at all possible, we recommend using two-electrode dynamic clamp. It isn’t as

bad as it sounds, and it eliminates weird capacitance transients from the recordings. In our

lab, we lower both electrodes onto the cell at the same time, then seal both, and break in one

by one.

5) Voltage glitches. Usually, the recorded membrane potential is used by both you as the

experimenter as well as by the dynamic clamp to determine the currents to pass. So, how do

you use one output on two devices? You would think you could just put a BNC T-connector

and split the voltage output from your amplifier. However, this can cause two problems.

One is that the output of the amplifier may not be powerful enough to support two readers.

This was our experience using the Multiclamp 700B. The other problem is that when the NI

boards read the voltage, they tend to introduce a glitch in the signal. This glitch doesn’t

degrade the signal read by that NI board, but if there is another NI board or an oscilloscope

or whatever also reading the same line, it may pick up that glitch. So, don’t use a T-

connector on your voltage output. If at all possible, use two different outputs (the

Multiclamp 700B has 3 separate outputs). If your amplifier has only one, well, you can

always see if this causes problems. Maybe passing the signal through a second amplifier

could help.

6) Ghost conductance. Sometimes, when you start mafDC, you may see an immediate change

in resting potential, even though there is no conductance requested. This is what I would call

a “ghost” conductance. It may indicate that the D/A from your Master has some offset. This

offset is typically small (e.g. 5 mV), but if you are using high gain to deliver large

conductances, this could still yield a significant conductance. There are three possible

solutions. One is to add a bias on your Master output (e.g. apply some negative conductance

so there is no change when you start mafDC). The second is to interpose a voltage follower

on the output from your Master, that adds a DC offset (as in “direct current”). That’s what

we do. The third is to complain to the manufacturer, who will ask you to send it back for

repairs, and you will wait a few weeks and pay several hundred dollars to get it back with a

different offset, that is formally within specs. Look on the bright side, though, if you can

think of one.

7) DAQ options. We obtained the highest speed using a PCIe-6361 board on the Slave setup,

upwards of 70 kHz, as assessed using Test mode. We got this as of 2017 using a Windows

10 computer running Igor 7, and we had similar speeds using Windows XP running Igor 6.

We have also had good results with PCI-6221 and PCI-6229 boards. We experimented with

a USB-6361 interface, and it was terrible. Cycle times of greater than 1 ms, as well as huge

latency and jitter of response times (using echo test mode). If anyone has better luck with

one of these USB interfaces, let me know.

35

Recipes
This section gives little code snippets to help you get started. Feel free to suggest others.

1. Simple loop

Suppose you want to stimulate a pathway with pairs of pulses every 10 s. One solution is to

make a pulse pattern that delivers the pulses (e.g. “TTLTrain” in part 4), and write a routine in a

Procedure file similar to the following:
function simpleExpt ()

 do

 mafPC_Run (“TTLTrain”, “stepDrtn:5;trainPause:9.8;trainN:2;trainIPI:10”)

 sleep /s 10

 while (1)

end

This passes the required parameters (stepDrtn, trainPause, and trainN) to the pulse pattern. In

addition it passes an extra parameter (trainIPI) so that it will be easier to figure out what we

actually did. Programs like this will print data in the history window, and have to be interrupted

with the “Abort” button, which is dangerous.

This basic outline can be significantly improved. Major improvements would be to:

1. Display the trace. The simplest solution is the AutoDisplay feature in mafITC (see ITC AD

Settings). mafBrowse has more useful features.

2. Measure summary data. Analysis could go right after the call to mafPC_Run, to measure

EPSC or EPSP amplitude, access resistance, leak current or resting potential, etc. The

mafITC_lastWave function is useful to reference the trace you just collected.

3. Exit gracefully. Using the “Abort” button to stop the loop can mess up mafITC and

mafScope. It is better to check for a key press or make the function run in the background.

4. Improve precision. Igor’s sleep function is somewhat inaccurate, so for very time-critical

situations, it is better to do it by counting ticks (or use the mafSleep function in mafUtils).

5. Mix in different stimuli. Additional calls to mafPC_Run could be added to execute different

types of stimuli, or have trains at different rates, or with different numbers of pulses, etc.
function betterExpt ()

 variable nextstim, thisindex

 do

 nextstim = ticks/60 + 10 // aim for next stim to be 10 s from now

 mafPC_Run (“TTLTrain”, “stepDrtn:5;trainPause:9.8;trainN:2;trainIPI:10”)

 // do some quick analysis of the pair of EPSCs

 thisindex = mafITC_nextwave() - 1

 EPSC1[thisindex] = wavemin ($mafITC_lastWave(0), .011, .015)

 EPSC2[thisindex] = wavemin ($mafITC_lastWave(0), .021, .025)

 PPR[thisindex] = EPSC2[thisindex] / EPSC1[thisindex]

 leak[thisindex] = numberbykey (“BASELINE”, note ($mafITC_lastWave(0)))

 doupdate

 mafBrowse (mafITC_ADPrefix (0), mafITC_nextWave () - 1, 0, 0)

 if (mafsleep (nextstim)) // returns 1 if esc pressed during sleep

 break

 endif

 while (!(getkeystate(0) & 0x20)) // runs until esc pressed

end

36

2. IV curve

To execute an IV curve, modify the Vstep pattern to look

like the diagram at right.

Next, enter this simple function in a procedure window:

function doIVCurve (startV, endV, deltaV)

 variable startV, endV, deltaV

 variable i

 display

 make /o/n=((endV – startV) / deltaV + 1) wresult

 setscale /p x, startV, deltaV, “mV”, wresult

 for (i = 0; i < numpnts (wresult); i += 1)

 mafPC_Run (“vStep”, “a1:” + num2str (startV + deltaV * i))

 wresult[i] = mean ($mafITC_lastWave(0), .15, .2) // get steady-state current

 appendtograph $mafITC_lastWave(0)

 doupdate

 sleep /s .2

 endfor

 display wresult

end

To run the IV curve, just type in the command line, something like:

doIVcurve (0, 100, 10)

Note that this is using relative voltages, not absolute. The cell’s absolute voltage would be

controlled with mafScope, then run “doIVcurve”. These voltages could also be specified to be

absolute by checking the “Abs” checkboxes in the pattern, and replacing the 0’s in DA0 with

−70 mV or something. StartV and endV would also have to be adjusted.

	General Comments
	Compatibility
	Preferences
	mafPC
	0. Installation
	1. General Organization
	2. Interval-based Patterns
	3. Using Parameters
	4. Using Trains
	5. Event-based Patterns
	6. Time Lists
	7. Dynamic Clamp
	8. Loading and Saving
	9. Other Features
	10. Programming with mafPC
	11. Some Common Issues
	mafITC
	mafScope
	mafCam
	mafBrowse
	mafDC
	Recipes

